Mapping the Interaction Anatomy of BmP02 on Kv1.3 Channel

نویسندگان

  • B. Wu
  • B. F. Wu
  • Y. J. Feng
  • J. Tao
  • Y. H. Ji
چکیده

The potassium channel Kv 1.3 plays a vital part in the activation of T lymphocytes and is an attractive pharmacological target for autoimmune diseases. BmP02, a 28-residue peptide isolated from Chinese scorpion (Buthus martensi Karsch) venom, is a potent and selective Kv1.3 channel blocker. However, the mechanism through which BmP02 recognizes and inhibits the Kv1.3 channel is still unclear. In the present study, a complex molecular model of Kv1.3-BmP02 was developed by docking analysis and molecular dynamics simulations. From these simulations, it appears the large β-turn (residues 10-16) of BmP02 might be the binding interface with Kv 1.3. These results were confirmed by scanning alanine mutagenesis of BmP02, which identified His9, Lys11 and Lys13, which lie within BmP02's β-turn, as key residues for interacting with Kv1.3. Based on these results and molecular modeling, two negatively charged residues of Kv1.3, D421 and D422, located in turret region, were predicted to act as the binding site for BmP02. Mutation of these residues reduced sensitivity of Kv 1.3 to BmP02 inhibition, suggesting that electrostatic interactions play a crucial role in Kv1.3-BmP02 interaction. This study revealed the molecular basis of Kv 1.3 recognition by BmP02 venom, and provides a novel interaction model for Kv channel-specific blocker complex, which may help guide future drug-design for Kv1.3-related channelopathies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BmP02 Atypically Delays Kv4.2 Inactivation: Implication for a Unique Interaction between Scorpion Toxin and Potassium Channel

BmP02, a short-chain peptide with 28 residues from the venom of Chinese scorpion Buthus martensi Karsch, has been reported to inhibit the transient outward potassium currents (Ito) in rat ventricular muscle cells. However, it remains unclear whether BmP02 modulates the Kv4.2 channel, one of the main contributors to Ito. The present study investigated the effects of BmP02 on Kv4.2 kinetics and i...

متن کامل

Mechanism of functional interaction between potassium channel Kv1.3 and sodium channel NavBeta1 subunit

The voltage-gated potassium channel subfamily A member 3 (Kv1.3) dominantly expresses on T cells and neurons. Recently, the interaction between Kv1.3 and NavBeta1 subunits has been explored through ionic current measurements, but the molecular mechanism has not been elucidated yet. We explored the functional interaction between Kv1.3 and NavBeta1 through gating current measurements using the Cu...

متن کامل

Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin.

The structurally defined sea anemone peptide toxins ShK and BgK potently block the intermediate conductance, Ca(2+)-activated potassium channel IKCa1, a well recognized therapeutic target present in erythrocytes, human T-lymphocytes, and the colon. The well characterized voltage-gated Kv1.3 channel in human T-lymphocytes is also blocked by both peptides, although ShK has a approximately 1,000-f...

متن کامل

The C-terminal domain of Kv1.3 regulates functional interactions with the KCNE4 subunit.

The voltage-dependent K+ channel Kv1.3 (also known as KCNA3), which plays crucial roles in leukocytes, physically interacts with KCNE4. This interaction inhibits the K+ currents because the channel is retained within intracellular compartments. Thus, KCNE subunits are regulators of K+ channels in the immune system. Although the canonical interactions of KCNE subunits with Kv7 channels are under...

متن کامل

Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes.

The potassium channel Kv1.3 has recently been located to the inner mitochondrial membrane of lymphocytes. Here, we show that mouse and human cells either genetically deficient in Kv1.3 or transfected with siRNA to suppress Kv1.3-expression resisted apoptosis induced by several stimuli, including Bax over-expression [corrected]. Retransfection of either Kv1.3 or a mitochondrial-targeted Kv1.3 re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016